<code id='93DAD5A2B0'></code><style id='93DAD5A2B0'></style>
    • <acronym id='93DAD5A2B0'></acronym>
      <center id='93DAD5A2B0'><center id='93DAD5A2B0'><tfoot id='93DAD5A2B0'></tfoot></center><abbr id='93DAD5A2B0'><dir id='93DAD5A2B0'><tfoot id='93DAD5A2B0'></tfoot><noframes id='93DAD5A2B0'>

    • <optgroup id='93DAD5A2B0'><strike id='93DAD5A2B0'><sup id='93DAD5A2B0'></sup></strike><code id='93DAD5A2B0'></code></optgroup>
        1. <b id='93DAD5A2B0'><label id='93DAD5A2B0'><select id='93DAD5A2B0'><dt id='93DAD5A2B0'><span id='93DAD5A2B0'></span></dt></select></label></b><u id='93DAD5A2B0'></u>
          <i id='93DAD5A2B0'><strike id='93DAD5A2B0'><tt id='93DAD5A2B0'><pre id='93DAD5A2B0'></pre></tt></strike></i>

          会员登录 - 用户注册 - 设为首页 - 加入收藏 - 网站地图 预测利用智能质指纹展光学蛋白得进人工取!

          预测利用智能质指纹展光学蛋白得进人工取

          时间:2025-05-11 22:37:13 来源:艺彩云栈 作者:综合 阅读:931次

          蛋白质是光学指纹生命的基石,生物的利用功能依赖于既稳定而又灵活可变的蛋白质结构。蛋白质的人工光谱响应信号,尤其是智能质取展紫外光谱,可以称之为蛋白质骨架的预测“指纹”。这个“光学指纹”,蛋白得进经过理论模拟的光学指纹解读,可以揭示出精确的利用蛋白质结构,为生命科学和医学诊断提供极其重要的人工信息。

          然而,智能质取展蛋白质的预测结构极其复杂多变,需要做大量的蛋白得进高精度的量子化学理论计算。由于计算量太大,光学指纹即使是利用最厉害的超级计算机轻易也“吃不消”。所以蛋白质的人工光谱的理论解读是一个长期的困难与挑战,限制了光谱的准确分析和蛋白质结构的发现。

          怎么在光谱理论模拟中避免太昂贵的量子化学计算,解读蛋白质骨架的“光学指纹”,是一个重要的科学课题。而近年来,人工智能技术被广泛应用到各个领域,用于大幅度降低复杂体系的计算量。

          最近,中国科学技术大学微尺度物质科学国家研究中心教授江俊,与中国科大教授罗毅和美国加州大学尔湾分校教授Shaul Mukamel合作,通过利用人工智能机器学习中的神经网络技术,模拟了蛋白质肽键结构与性质之间的构效关系,将计算量一下降低了上万倍。最后他们成功地预测了肽键紫外光谱,还用随机森林的办法揭示了具有化学内涵的结构描述子和构效关系。人工智能与量子化学理论计算的结合,为预测蛋白质的光学特性提供了一种高效的工具。相关成果以A Neural Network Protocol for Electronic excitations of N-Methylacetamide 为题发表在《美国国家科学院院刊》(PNAS, DOI:10.1073/pnas.1821044116)。

          江俊课题组近些年致力于发展机器学习技术在量化领域的应用,努力探究使其成为解决量化问题的一种重要工具。在该工作中,研究人员首先在300K温度下通过分子动力学模拟以及量子化学计算,得到了五万组不同构型的肽键模型分子。通过机器学习算法筛选出键长、键角、二面角跟电荷信息作为描述符,通过神经网络来构建肽键基态结构与其激发态性质之间的构效关系。基于训练好的机器学习模型,预测出了肽键的基态偶极矩及激发态性质,最后预测出肽键的紫外吸收光谱。为了验证机器学习模型的鲁棒性,研究人员又基于300K的温度下得到的机器学习模型,预测出肽键在200K以及400K温度下的紫外吸收光谱,其结果与时间密度泛函理论计算很好地吻合。

          这是人工智能技术首次用于理论计算预测蛋白质的光谱研究。通过理论计算得到大量数据,使用人工智能加以训练构建构效关系,使用最后得到的模型用于预测,为模拟蛋白质的光谱提供了一种新的思路。该项工作确立了机器学习模拟蛋白质肽键骨架紫外吸收光谱的可行性和优势,蛋白质的“光学指纹”解读也将会变得更加轻易和有效。

           

           

          声明:本文所用图片、文字部分来源于网络,版权归原作者所有。如涉及到版权问题,请及时和我们联系。
           

          (责任编辑:探索)

          相关内容
          • 忍者神龟施莱德的复仇稳健连招攻略必学实用连击与高胜率组合技巧解析
          • 新场景 新体验 新活力_
          • 全国先进工作者王帅 :躬耕杏坛三十载 甘做教育燃灯者
          • “苏拉”路径南调?专家回应未来走向仍有较大不确定性
          • 星际战甲每周任务高效通关指南 任务攻略与实战技巧全解析
          • 中央气象台继续发布台风蓝色预警
          • 江湖X汉家江湖战斗机制深度解析:伤害计算与攻防公式全面剖析
          • 宿州火车站:多措并举确保旅客安全出行
          推荐内容
          • 空之要塞启航谢诺克探案集庄园谜案全解与凶手推演终极攻略
          • 宿州绿色家居产业园:落实“五大任务” 促进“产城人”融合
          • 即日起至2024年3月15日 布达拉宫可免费参观
          • 山西太原一小区发生爆炸事故
          • 影之刃3木沉支线剧情抉择解析关键选项影响与路线选择全攻略
          • 2025年全市水利工作会议召开